<u>Obésité</u>

Peut-on encore conseiller les édulcorants à nos patients ?

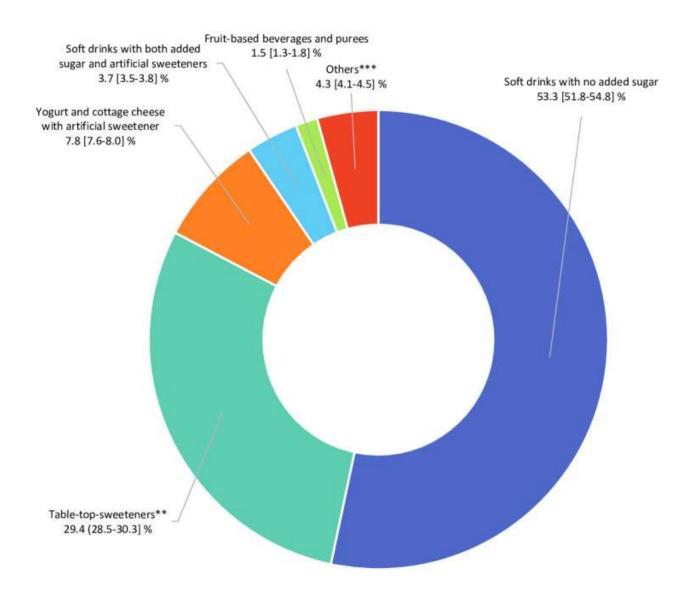
27/09/2024

Dr Guillaume COLANGE

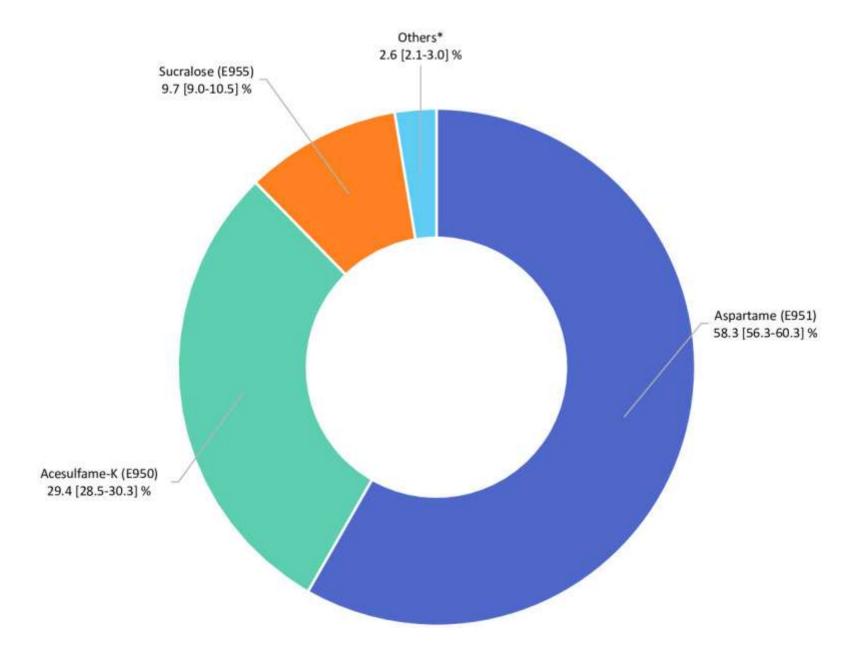
CHU de ROUEN Hôpital Saint-Julien SMR du Caux-Littoral

Un édulcorant, c'est quoi?

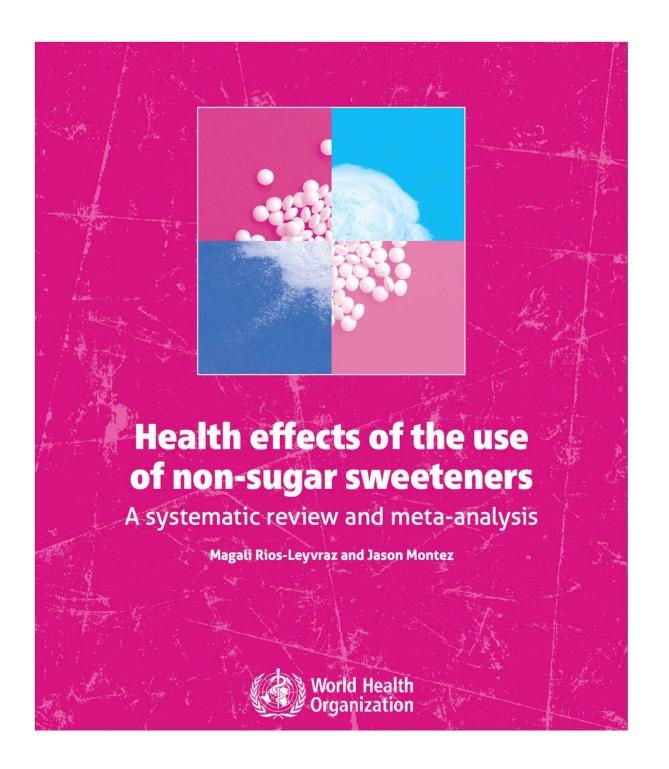
les édulcorants massiques (« de charge »)


- Remplacent la masse de sucres simples
- Moindre apport énergétique (0 à 2,6 kcal/g)
- Pouvoir sucrant allant de 0,3
 à 1 comparativement au
 saccharose
- Polyols+++ naturels ou de synthèse

les édulcorants intenses : pouvoir calorique nul mais pouvoir sucrant très élevé


- Saccharine (200 à 700 fois)
- Aspartame (200 fois)
- Acésulfame-K (100 fois)
- Sucralose (600 fois)
- Glycoside de steviol (300 fois)

Hétérogénéité chimique +++


Autorisation par EFSA, DJA (Dose Journalière Admissible) déterminée à partir des données toxicologiques

Relative contribution of each food group to the total intake of artificial sweeteners (percentage), NutriNet-Santé, France, 2009–2021 (n = 102,865)

Relative contribution of each specific artificial sweetener to the total intake of artificial sweeteners (percentage), NutriNet-Santé, France, 2009–2021 (n = 102,865).

Consommation d'édulcorants à des niveaux supposés comme sûrs Données disponibles

Court terme +/- 3 mois

Essais contrôlés
randomisés

Plus long terme
Pas d'ECR
Etudes
observationnelles

Effet des édulcorants sur le poids ?

Essais contrôlés randomisés à court terme +/- 3 mois :

perte de poids de ???? Kg

Fig. 3. Effect of NSS intake on body weight (kg) in randomized controlled trials

Study	NSS	no NSS	MD	95% CI	Weight	MD (95% CI)
Al-Dujaili 2017	16	16	-0.90	(-3.87, 2.07)	1.5%	-
Blackburn 1997	41	45	-5.10	(-7.15, -3.05)	2.4%	
Bonnet 2018 (SEDULC)	50	50	-0.59	(-1.70, 0.52)	4.0%	=
Campos 2015 (REDUCS study)	14	13	-2.30	(-5.09, 0.49)	1.6%	-
Ebbeling 2020 (BASH III)	67	136	-0.35	(-1.75, 1.05)	3.5%	- #-
Engel 2018	15	30	-0.57	(-2.27, 1.12)	2.9%	
Han 2018	40	81	0.77	(0.11, 1.43)	4.9%	=
Higgins 2018	31	31	0.70	(-0.60, 2.00)	3.6%	-
Higgins 2019	115	39	-1.41	(-2.20, -0.61)	4.6%	
Kanders 1988	28	27	-0.98	(-2.75, 0.78)	2.8%	
Kim 2011	9	12	-0.68	(-1.61, 0.25)	4.4%	=
Kim 2020	39	39	-0.20	(-4.13, 3.73)	1.0%	
Kuzma 2015	9	9	0.00	(-5.78, 5.78)	0.5%	
Lertrit 2018	15	15	0.05	(-10.71, 10.81)	0.2%	
Madjd 2018 (week 77)	36	35	2.40	(0.97, 3.83)	3.4%	-
Markey 2016 (REFORM)	50	50	-0.40	(-1.56, 0.76)	3.9%	
McLay-Cooke 2016 (Ice Tea Study)	63	53	-0.68	(-1.27, -0.10)	5.0%	-
Njike 2011	32	33	-0.09	(-0.49, 0.31)	5.3%	
Peters 2016 (week 52)	154	149	-3.76	(-4.52, -3.00)	4.7%	-
Raben 2002	20	21	-2.60	(-3.71, -1.49)	4.0%	-
Reid 2007	65	68	-0.66	(-1.04, -0.28)	5.3%	-
Reid 2010	29	24	-0.49	(-1.13, 0.14)	4.9%	=
Reid 2014	21	20	0.18	(-0.99, 1.35)	3.9%	*
Romo-Romo 2018	30	31	-0.82	(-1.59, -0.05)	4.7%	
Sagrario Lopez-Meza 2021	26	13	-0.37	(-1.99, 1.25)	3.1%	-
Sanchez-Delgado 2021	26	12	-1.08	(-2.89, 0.72)	2.8%	
Stamataki 2020	14	14	-1.11	(-1.37, -0.85)	5.4%	•
Tate 2012 (CHOICE)	105	162	-0.70	(-1.79, 0.39)	4.1%	-
Viveros-Watty 2021	21	24	3.53	(0.73, 6.33)	1.6%	
Total	1181	1252		(-1.13,-0.28)	100.0%	•
Heterogeneity: $Tau^2 = 0.9$; $Chi^2 = 167.77$, $df = 28$ (P < 0.01); $I^2 = 83\%$						
Test for overall effect: Z = -3.25 (P < 0.0	11)					-10 -5 0 5 10
NCC Non Curren Currenters						Favours NSS Favours no NSS

NSS = Non Sugar Sweeteners

Effet des édulcorants sur le poids ?

Essais contrôlés randomisés sur court terme +/- 3 mois :

perte de poids mineure 700g

Etudes observationnelles plus long terme :

- augmentation de l'incidence de **l'obésité** (+76%)
- augmentation du risque de de diabète de type 2 (+23/34%)

Outcome	Pooled estimate (95%CI)	No. studies	No. participants	Certainty	
Body weight (kg)					
RCT	MD -0.71 (-1.13 to -0.28)	29	2 433	Low	
Observational (cont)	MD -0.12 (-0.40 to 0.15)	4	118 457	Very low	
Observational (H/L)	MD -0.01 (-0.67 to 0.64)	5	11 874	Very low	
Obesity					
Observational	HR 1.76 (1.25 to 2.49)	2	1 668	Low	
Type 2 diabetes					
Observational (bev)	HR 1.23 (1.14 to 1.32)	13	408 609	Low	
Observational (TT)	HR 1.34 (1.21 to 1.48)	2	62 582	Low	

HR: hazard ratio; MD: mean difference

Bev : beverage. TT : tabletop

Le biais de corrélation inverse

• On prend du poids parce qu'on consomme des édulcorants ?

OU

• On consomme des édulcorants parce qu'on a pris du poids ?

Outcome	Pooled estimate (95%CI)	No. studies	No. participants	Certainty
All-cause mortality				
Observational	HR 1.12 (1.05 to 1.19)	8	860 873	Very low
CVD mortality				
Observational	HR 1.19 (1.07 to 1.32)	5	598 951	Low
CVDs				
Observational	HR 1.32 (1.17 to 1.50)	3	166 938	Low
CHD				
Observational	HR 1.16 (0.97 to 1.39)	4	205 455	Very low
Stroke				
Observational	HR 1.19 (1.09 to 1.29)	6	655 953	Low
Hypertension				
Observational	HR 1.13 (1.09 to 1.17)	6	234 137	Low

Use of non-sugar sweeteners

WHO guideline

Recommendation and supporting information

This recommendation should be considered in the context of WHO recommendations to reduce free sugars intake and other guidance promoting healthy diets, including WHO guidelines on carbohydrates, total fat, saturated and *trans*-fatty acids, polyunsaturated fatty acids, sodium and potassium.

WHO recommendation

WHO suggests that non-sugar sweeteners not be used as a means of achieving weight control or reducing the risk of noncommunicable diseases (conditional recommendation).

Diabète exclu du champ des recommandations

PLOS MEDICINE

RESEARCH ARTICLE

Artificial sweeteners and cancer risk: Results from the NutriNet-Santé population-based cohort study

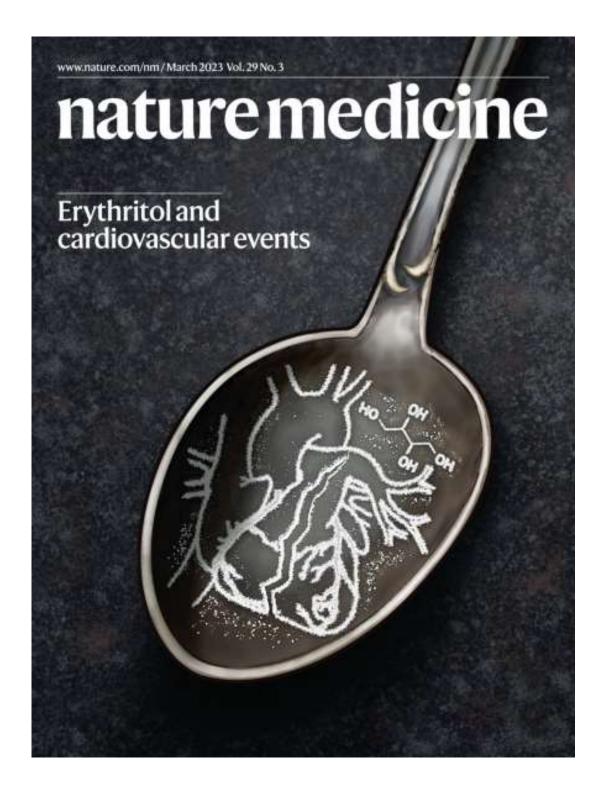
Charlotte Debras 1,2*, Eloi Chazelas 1,2, Bernard Srour 1,2, Nathalie Druesne-Pecollo 1,2, Younes Esseddik 1, Fabien Szabo de Edelenyi 1, Cédric Agaësse 1, Alexandre De Sa 1, Rebecca Lutchia 1, Stéphane Gigandet 3, Inge Huybrechts 2,4, Chantal Julia 1,5, Emmanuelle Kesse-Guyot 1,2, Benjamin Allès 1, Valentina A. Andreeva 1, Pilar Galan 1,2, Serge Hercberg 1,2,5, Mélanie Deschasaux-Tanguy 1,2, Mathilde Touvier 1,2

1 Sorbonne Paris Nord University, INSERM U1153, INRAE U1125, CNAM, Nutritional Epidemiology Research Team (EREN), Epidemiology and Statistics Research Center, University of Paris (CRESS), Bobigny, France, 2 French Network for Nutrition and Cancer Research (NACRe network), Jouy-en-Josas, France, 3 Open Food Facts, Saint-Maur-des-Fossés, France, 4 International Agency for Research on Cancer, World Health Organization, Lyon, France, 5 Public Health Department, Avicenne Hospital, Assistance Publique—Hôpitaux de Paris, Bobigny, France

Edulcorants et Cancer

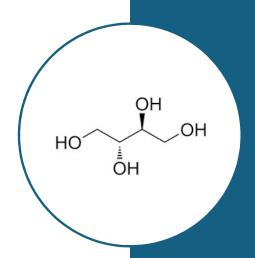
- Large cohorte de **102 865** adultes français
- Suivi **7,8 ans** en moyenne
- les édulcorants artificiels (notamment l'aspartame et l'acésulfame-K) étaient associés à une augmentation du risque global de cancer.
- Risque de K des forts consommateurs plus élevés par rapport aux non-consommateurs = 1,13 [IC à 95 % 1,03 à 1,25], P trend = 0,002).
- Limitations +++

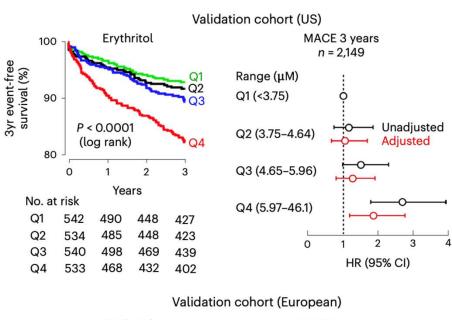
Diabète de part et d'autre de l'atlantique

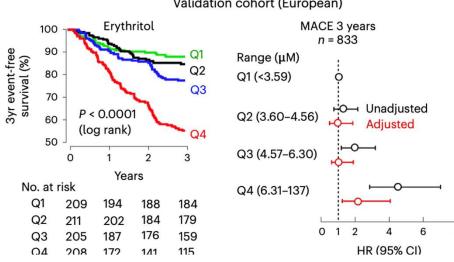


 Non-nutritive sweeteners (NNS) can be used to replace sugars in foods and beverages. ⊕⊕⊕⊖ Moderate

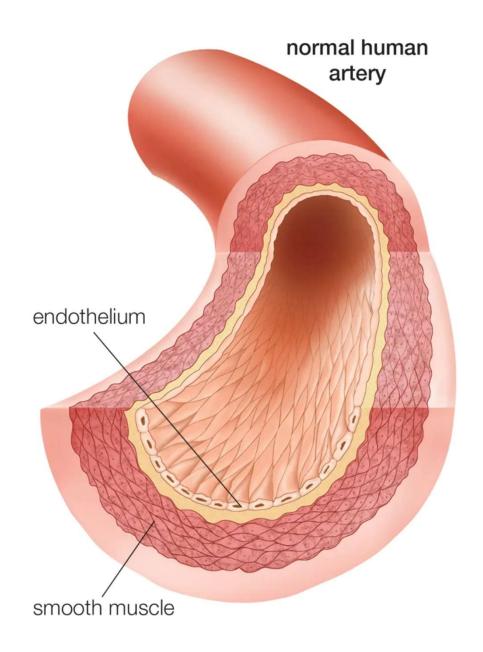
Evidence-based European recommendations for the dietary management of diabetes. *Diabetologia* **66**, 965–985 (2023).

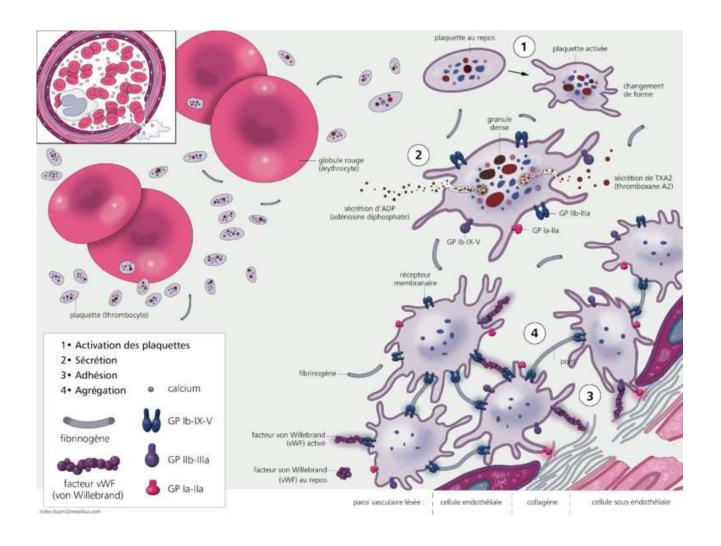

- 5.16 People with diabetes and those at risk are advised to replace sugar-sweetened beverages (including fruit juices) with water or low-calorie or no-calorie beverages as much as possible to manage glycemia and reduce risk for cardiometabolic disease B and minimize consumption of foods with added sugar that have the capacity to displace healthier, more nutrient-dense food choices. A
- 5.26 Counsel people with prediabetes and diabetes that water is recommended over nutritive and nonnutritive sweetened beverages. However, the use of nonnutritive sweeteners as a replacement for sugar-sweetened products in moderation is acceptable if it reduces overall calorie and carbohydrate intake. B



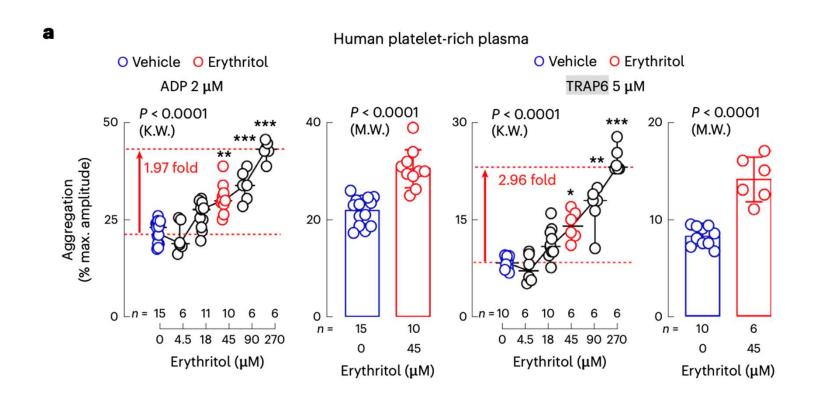

L'érythritol : 0 kcal et naturel

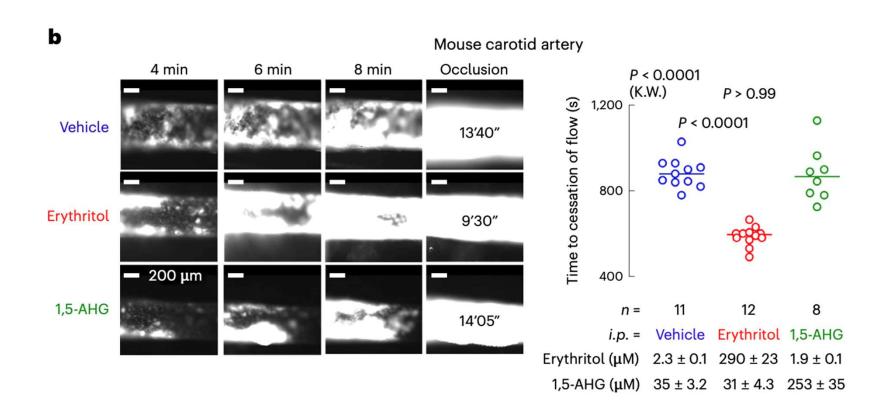
- Alcool de sucre à 4 carbone (polyol) couramment utilisé comme substitut du sucre.
- Il est naturellement présent en faibles quantités dans les fruits et légumes
- Faible pouvoir sucrant vs saccharose
- Aliments transformés : quantité x 1000 fois vs endogènes
- Jusqu'à 60 % du poids des aliments dans certaines crèmes ou pâtisseries
- Apport quotidien d'érythritol en population américaine générale : jusque 30 g/j NHNES* 2013-2014 et FDA18.





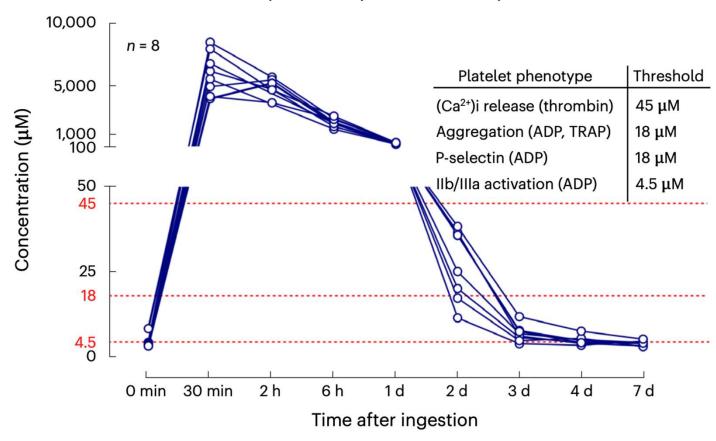
Q = quartile


Adjustment US cohort: age, sex, diabetes mellitus, systolic BP, BMI, LDL, HDL, triglyceride and current smoking status. In the European cohort, the adjustment included all of the aforementioned variables except for BMI (not available), and instead of systolic blood pressure, hypertension was used.

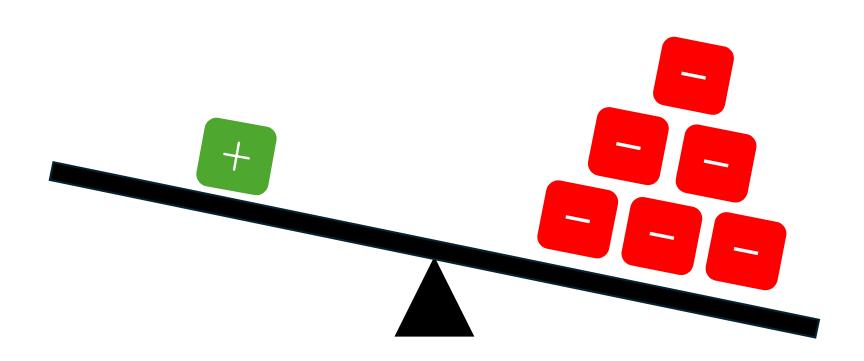


https://mhemo.fr/les-pathologies/physiologie-de-lhemostase/

Erythritol et aggrégation des plaquettes



Erythritol et thrombose in vivo (souris)



Charge orale 30 g erythritol

Balance bénéfices-risques édulcorants intenses

En conclusion:

Sucrer les édulcorants!

Pas d'intérêt démontré de l'utilisation des édulcorants dans la prise en charge de l'obésité (Faible)

Une consommation chronique d'édulcorants (aux doses « sûres » est associée à une augmentation de l'incidence de l'obésité, du diabète, des maladies cardio-vasculaires, etc. (Très faible, Faible)

Néanmoins, d'un point de vue pragmatique il semble licite d'utiliser les édulcorants chez les forts consommateurs de sucres, notamment de boissons sucrées (Niveau de preuve : « au doigt mouillé »)

Les Doses Journalières Admissibles le sont-elles vraiment ? Réévaluation+++

L'erythritol bouche littéralement les artères à des concentrations habituelles. Probablement à bannir.

MERCI DE VOTRE ATTENTION!

Tableau I. Édulcorants intenses autorisés en Europe.

Apport calorique	Pouvoir sucrant ^a	Origine	Code additif	
0	200	Artificiel	E950	
≈ 0	20 000	Artificiel	E969	
4	200	Artificiel	E951	
0	20-40	Artificiel	E952	
2	400-600	Artificiel	E959	
0	7000–13 000	Artificiel	E961	
0	300-400	Artificiel	E954	
0	200–300	Naturel	E960	
0	250	Artificiel	E962	
0	600	Artificiel	E955	
0	1600–3000	Naturel	E957	
	(kcal/g) 0 ≈ 0 4 0 2 0 0 0 0 0 0 0	(kcal/g) sucranta 0 200 ≈ 0 20 000 4 200 0 20-40 2 400-600 0 7000-13 000 0 300-400 0 200-300 0 250 0 600	(kcal/g) sucranta 0 200 Artificiel ≈ 0 20 000 Artificiel 4 200 Artificiel 0 20-40 Artificiel 2 400-600 Artificiel 0 7000-13 000 Artificiel 0 300-400 Artificiel 0 200-300 Naturel 0 250 Artificiel 0 600 Artificiel	

Battault et al., MMM, 2022